CMV infection and prevention in renal transplantation

Morgyn Warner

South Australia

Cytomegalovirus

- Risk of CMV disease is dependent on
 - Donor & recipient serostatus
 - use of T-cell–depleting antibodies
 - Release of tumor necrosis factor (TNF- α)
 - Allo-response to organ (worse with more HLA mismatch)
- Disease manifestations
 - Asymptomatic CMV viremia
 - CMV syndrome
 - End organ disease
 - Indirect/immunologic effects (rejection)
 - Depends upon immune response and prophylaxis used

CMV disease in renal transplant patients

Risk factors

- Highest among:
 - CMV IgG negative recipients of (R-) of organs from CMV IgG+ donors (D+)
 - Without prophylaxis, 40%–58% of CMV D+/R kidney transplant recipients develop CMV disease, usually during the first 3 months after transplantation
 - Patients receiving lymphocyte depleting antibody therapy (thymoglobulin, ATG, OKT-3, alemtuzumab)

CMV Anti-Virals : Mechanisms

CMV: Prevention

• Prophylaxis

- Positives
 - Good efficacy (large RCTs)
 - Lower rate of CMV disease
 - Lower rejection & graft loss
 - Easy to coordinate
 - No viral load monitoring while on therapy
- Negatives
 - Drug costs
 - Drug toxicity
 - Late onset CMVin D+/R-
 - Resistance

• Pre-Emptive

- Positives
 - Efficacy (fewer trials, less D+/R-)
 - Low drug costs
 - Low toxicity
 - Much less late onset CMV
- Negatives
 - More CMV
 - Standard threshold for treatment not established
 - Infection may occur if no monitoring occurs
 - Difficult to coordinate
 - Resistance

Adapted from Razonable, R et al, Am J Transplant 2013; 13:93

CMV viraemia

CMV syndrome

Author(s) and Year Prop	hylaxis Preemptive Yes No Yes No		Odds Ratio [95% CI]
Bodro M, 2012	2 33 6 33		0.33 [0.06 , 1.77]
Kim SI, 2012	37 265 26 306	₽₩→	1.64 [0.97 , 2.79]
Witzke O, 2012	7 139 19 131	┝━━━┥	0.35 [0.14 , 0.85]
McGillicuddy JW, 2010	4 67 5 54	⊢_ ∎ <u></u> 1	0.64 [0.17 , 2.52]
Paudice N, 2009	2 98 0 96	⊢	4.90 [0.23 , 103.36]
Reischig T, 2008	2 32 1 35	⊢	2.19 [0.19 , 25.30]
Khoury JA, 2006	4 45 1 48	⊢	4.27 [0.46 , 39.63]
Monforte V, 2005	10 20 3 22		3.67 [0.88 , 15.25]
Singh N, 1994	3 21 1 22	⊢₽	3.14 [0.30 , 32.65]
Walker JK, 2007	8 85 14 96	 -1	0.65 [0.26 , 1.61]
RE Model		+	1.10 [0.60 , 2.03]

Florescu et al

The Clash Of The Titans: Prophylaxis Vs. Preemptive Strategies For CMV Infections After Solid Organ Transplantation. A Metaanalysis. ID Week 2013 abstract 1668

Risk of invasive CMV disease

	Invasive CMV disease	
Author(s) and Year Prop	hylaxis Preemptive	Odds Ratio [95% CI]
	Yes No Yes No	
Bodro M, 2012	3 32 13 26 ⊢	0.19 [0.05 , 0.73]
Couzi L, 2012	2 22 5 67	1.22 [0.22 , 6.73]
Witzke O, 2012	4 142 5 145 ⊢∎	0.82 [0.21 , 3.10]
Abate D, 2010	1 12 2 68	2.83 [0.24 , 33.75]
McGillicuddy JW, 2010	0 71 2 57 🔸	0.16[0.01, 3.42]
van der Beek MT, 2010	0 29 0 42 +	1.44 [0.03 , 74.67]
Lopez-Medrano F, 2009	9 41 3 10 🛏 🖬 🕂	0.73 [0.17 , 3.21]
Paudice N, 2009	26 74 0 96	68.65 [4.12 , 1144.99]
Potena L, 2009	1 18 7 14 🔸 💶 🚽	0.11[0.01, 1.01]
Reischig T, 2008	1 33 1 35	1.06 [0.06 , 17.66]
Diaz-Pedroche C, 2006	0 14 0 24 +	1.69 [0.03 , 89.83]
Khoury JA, 2006	1 48 0 49	3.06 [0.12 , 77.02]
Monforte V, 2005	2 28 3 22	0.52 [0.08 , 3.41]
Singh N, 1994	4 20 0 23	10.32 [0.52 , 203.36]
Jung C, 2001	3 31 3 33	1.06 [0.20 , 5.68]
Kliem V, 2008	0 73 9 56 🛏 🛶	0.04 [0.00 , 0.71]
Qiu J, 2008	1 29 2 28	0.48 [0.04 , 5.63]
Walker JK, 2007	5 88 3 107	2.03 [0.47 , 8.72]
Weclawiak H, 2010	4 146 13 119 ⊢─■──	0.25 [0.08 , 0.79]
RE Model	+	0.77 [0.41 , 1.47]
	0.10 1.00 10.00	

Diana Florescu et al

The Clash Of The Titans: Prophylaxis Vs. Preemptive Strategies For CMV Infections After Solid Organ Transplantation. A Meta-analysis. ID Week 2013 abstract 1668

Late onset CMV disease

Author(s) and Year	Prophylaxis Preemptive Yes No Yes No	2	Odds Ratio [95% CI]
Bodro M, 2012	2 33 0 39	⊢	5.90 [0.27 , 127.14]
Couzi L, 2012	6 18 0 72	FF	50.95 [2.74 , 945.92]
Witzke O, 2012	15 131 6 144	- 1	2.75 [1.04 , 7.29]
Abate D, 2010	5 8 8 62	⊢ −−■−−−1	4.84 [1.27 , 18.46]
Reischig T, 2008	16 18 1 35		31.11 [3.81 , 253.74]
Khoury JA, 2006	11 38 0 49	بــــ	29.57 [1.69 , 517.69]
Weclawiak H, 2010	4 146 2 130	⊢	1.78 [0.32 , 9.88]
RE Model			6.21 [2.55 , 15.17]
		0.10 1.00 10.00	

Late onset CMV disease

Diana Florescu et al

The Clash Of The Titans: Prophylaxis Vs. Preemptive Strategies For CMV Infections After Solid Organ Transplantation. A Metaanalysis. ID Week 2013 abstract 1668

Other findings prophylaxis vs pre-emptive

- No differences between prophylaxis and pre-emptive strategy for:
 - Graft loss (OR 0.88; p=0.78)
 - Graft loss censored for death (OR 0.73; p=0.78)
 - Acute rejection (OR 0.93, p=0.64)
 - Mortality OR 0.8, p=0.22)
- More patients on prophylaxis had leukopenia (OR 1.97, p=0.0001)
- Neutropenia (OR 2.07, p=0.02)
- Odds for other infections (VZV, HSV, bacterial, fungal infections not different between 2 strategies

CMV prophylaxis regimens

	D+/R-	R+	D-/R-	Receipt of lymphocyte depleting rx	Other
SA (CALHN)	90 days valganciclovir 450 mg daily	None- preemptive strategy (unless receive lymph depl tx)	None	valganciclovir 450 mg daily (even D-/R-)	
WA (Royal Perth)	180 days valganciclovir 900 mg daily	90 days Valganciclovir 900 mg daily	None	90 days post receipt of tx	Monitoring two- weekly for 6 mo after cessation of prophylaxis
NSW (Hunter)	180 days CMV Ig at induction Initially ganciclovir 1.25mg/kg 3x/week iv then valganciclovir 450 mg daily	100 days Initially ganciclovir 1.25mg/kg 3x/week iv then valganciclovir 450 mg daily	None	90 days post receipt of tx valganciclovir 450 mg daily	
QLD (QLD transplantation service)	180 days Valganciclovir 900 daily (GFR >60)	90 days Valganciclovir 900 mg daily (GFR >60)	None		
VIC (Austin Health)	180 days Valganciclovir 450-900 mg dailv	?	?		

Dose adjustments renal failure

CrCl (ml/min)	Product information	SA	QLD	NSW
≥60	900 mg once	450 mg once	450 mg twice	450 mg once
	daily	daily	daily	daily
40-59	450 mg once	450 mg once	450 mg	450 mg once
	daily	daily	once daily	daily
25-39	450 mg every 2 days	450 mg every 2 days	450 mg Mon, Wed, Fri	Not specified
10-24	450 mg twice	450 mg every	450 mg twice	450 mg every
	weekly	2 days	weekly (M,F)	2 days
<10	Not rec (powder 100mg po 3x/wk after dialysis)	450 mg 2-3 times/week post dialysis	Nil or 0.625 mg/kg ganciclovir post dialysis 2-3x/week	Ganciclovir IV post dialysis 2-3x/week

Paya C et al. *Am J Transplant*. 2004;4:611-620.

Target ganciclovir level?

- Erice et al. found that patients responded to treatment for CMV disease had mean GCV trough levels of 0.7 µg/ml, compared with 0.43 µg/ml in those with progressive CMV.
- GCV level that is required to avoid asymptomatic CMV viremia posttransplantation is uncertain

Ganciclovir exposure in relation to renal function-what is an appropriate level?

Valganciclovir 450 mg daily

GCV trough levels Therapeutic >0.6 mg/litre Sub-therapeutic <0.6 mg/litre Severely deficient <0.3 mg/liter

Fig. 1. Ganciclovir systemic exposure (area under the curve $[AUC_{0-24}]$) in patients receiving 450 mg of valganciclovir,

Parameter	GFR _{MDRD} 26–39 mL/min	GFR _{MDRD} 40–59 mL/min	GFR _{MDRD} ≥60 mL/min
Number of patients ^a	13	23	17
Number of samples	22	47	33
GFR _{MDRD} , mL/min, mean ± SD	33.6 ± 3.7	40.0 ± 5.4	60.4 ± 0.0
Ctrough, mg/L, median (range)	1.29 (0.57-2.34)	0.55 (0.28-1.25)	0.38 (0.23-0.83)
AUC0-24 h, mg h/L, median (range)	59.3 (39.0-85.3)	35.6 (24.9-58.3)	29.6 (22.0-43.2)

AUC_{0-24 h}, area under the curve; C_{trough}, ganciclovir levels at trough; GFR, glomerular filtration rate; MDRD, Modification of Diet in Renal Disease.

^aBecause the GFR was calculated for each sample, a patient could be included in more than one group depending on the evolution of the kidney function.

Manuel Clin Transplant 2010 DOI: 10.1111/j.1399-0012.2009.01205.x

Electronic Estimations of Renal Function Are Inaccurate in Solid-Organ Transplant Recipients and Can Result in Significant Underdosing of Prophylactic Valganciclovir

J. Trevillyan,^a P. Angus,^{b,e} E. Shelton,^b J. Whitlam,^c F. Ierino,^{c,e} J. Pavlovic,^b D. Gregory,^c K. Urbancic,^a J. Torresi,^{a,e} A. Testro,^{b,e} M. L. Grayson^{a,d,e}

Infectious Diseases,^a Gastroenterology,^b and Nephrology^c Departments, Austin Health, Heidelberg, Victoria, Australia; Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia^d; Department of Medicine, University of Melbourne, Victoria, Australia^e

In a prospective study of solid-organ transplant recipients (n = 22; 15 hepatic and 7 renal) receiving valganciclovir for cytomegalovirus (CMV) prophylaxis, electronic estimation of glomerular filtration rate (eGFR) underestimated the true GFR (24-h urine creatinine clearance) by >20% in 14/22 (63.6%). Its use was associated with inappropriate underdosing of valganciclovir, while the Cockroft-Gault equation was accurate in 21/22 patients (95.4%). Subtherapeutic ganciclovir levels (≤ 0.6 mg/liter) were common, occurring in 10/22 patients (45.4%); 7 had severely deficient levels (< 0.3 mg/liter).

Inaccuracy of eGFR

- GCV concentrations of <0.6 mg/liter common (45.4% at some stage)
- several patients with severely low levels below the routinely reported 50% inhibitory concentration [IC50] for CMV

FIG 1 Comparison of estimated glomerular filtration rate (eGFR) and measured creatinine clearance (mCCl) from 24-h urine samples. n = 31 samples from 22 patients.

Valganciclovir 900mg vs 450mg

Effectiveness of Valganciclovir 900 mg versus 450 mg for Cytomegalovirus Prophylaxis in Transplantation: Direct and Indirect Treatment Comparison Meta-analysis

 Andre C. Kalil,¹ Cezarina Mindru,² and Diana F. Florescu¹
 Kalil CID 2011:52

 ¹Infectious Diseases Division and ²Hepatololgy Division, University of Nebraska Medical Center, Omaha, Nebraska
 Avery CID 2011:53 (ed)

Findings:

Similar efficacy, 3 times increase in the risk of leucopenia and 2 times increase in the risk of rejection compared with VGC 450 mg BUT: 900mg group included lung transplants, 450 mg did not In PV16000 study the oral ganciclovir arm (which was said to be comparable to the 450-mg valganciclovir dosage group) included patients who developed ganciclovir-resistant CMV infection (1.9% of patients), whereas the valganciclovir group (which received the higher dosage of 900 mg/day) did not develop ganciclovir-resistant infection

- Important Considerations for Prophylaxis for D+/R- Patients
- Dosing of antiviral medication should be based on standard recommended dosing algorithms and adjusted for renal function.
- "Mini-dosing" strategies (i.e., valganciclovir
 450 mg a day with normal renal function) are not recommended.

Kotton et al International Consensus Guidelines on the Management of Cytomegalovirus in Solid Organ Transplantation *Transplantation* 2010;89: 779–795

CMV: Late-Onset Disease

Table 2. Univariate Cox proportional hazard model for risk factors associated with delayed-onset primary cytomegalovirus disease after kidney transplantation.

Risk factor	Hazard ratio (95% CI)	Ρ
Age at time of transplantation	1.010 (0.989–1.032)	.339
Male sex	0.986 (0.555-1.752)	.963
Charlson comorbidity index (continuous variable)	1.049 (0.900-1.222)	.550
Charlson comorbidity index ≥3	2.207 (1.155-4.218)	.017
Diabetes mellitus	0.820 (0.462-1.456)	.494
Induction immunosuppressive therapy		
Thymoglobulin	1.398 (0.714–2.734)	.328
Basiliximab	0.587 (0.211-1.634)	.308
Daclizumab	0.532 (0.0734–3.855)	.532
Combination of thymoglobulin, rituximab, intravenous immunoglobulin, and plasmapheresis	0.891 (0.353-2.248)	.808
Maintenance immunosuppressive therapy ^a		
Cyclosporine	0.580 (0.081-4.198)	.554
Sirolimus	0.908 (0.361-2.285)	.835
Tacrolimus	1.026 (0.438-2.406)	.951
Time of onset of bacterial infection after transplantation		
1 month	5.379 (2.386-12.125)	<.001
2 months	3.353 (1.608-6.992)	.001
3 months	1.845 (0.880-3.867)	.104
Time of onset of fungal infection after transplantation		
1 month	8.640 (1.144–65.275)	.034
2 months	3.859 (0.525–28.377)	.185
3 months	2.602 (0.356-19.046)	.346
Acute graft rejection	0.335 (0.120-0.933)	.036
Treated acute graft rejection ^b	0.292 (0.091-0.940)	.039

^a Because almost every study subject was receiving mycophenolate mofetil and prednisone, these were not assessed for their association with delayed-onset primary cytomegalovirus disease.
^b Treated acute graft rejection followed by 1–3 months of antiviral prophylaxis.

Arthurs et al. Clin Infect Dis. 2008; 46: 840-846.

CMV: Prophylaxis duration

• IMPACT Study

- Randomized 318 D+/R- kidney transplant recipients to valGCV 900mg QD for 100 vs. 200 days
- Followed the patients to 1 year
 - CMV: 36.8% vs. 16.1% (p< 0.0001)
 Rejection: 17.2% vs. 11% (p = 0.11)
 - Graft Loss:
- 1.8% vs. 1.9% (p = 0.9)

Helantera AmJ Trp 2010 CMV infection in 47/127 (37%) D+R- pts after 6 mo rx valgan

Humaret al. Am Transplant Congress 2009 (Boston): Abstract 201.

Timing of prophylaxis

- Usually within days of transplantation
- Small trial delayed long-term prophylaxis in (D+/R-) solid organ transplant recipients to 2 weeks post transplant
 - Saw decreased rates of CMV disease
 - CMV disease occurred in 7 of 26 patients (27%) receiving conventional prophylaxis compared with 1 of 18 patients (5.5%) receiving delayed prophylaxis (p = 0.07).
 - Furthermore, five patients (19%) receiving conventional prophylaxis developed CMV colitis, while none of the patients receiving delayed prophylaxis developed tissue-invasive disease (p = 0.048).
 - ? Transient exposure of immune system to CMV allowed development of partial protective immunity

San Juan, Clin Transplant 2009; 23 (5): 666-71

CMV: Treatment

Åsberg et al. Am J Transplt. 2007; 7:2106.

Treatment-duration

- Recommended duration of therapy
 - Treat until CMV PCR is negative
 - Clinical evidence of disease has resolved
 - Minimum 2-3 weeks
 - Am J Transp 13(s4):93, 2013, Blood 113:5711, 2009

When is IV ganciclovir preferred over po valganciclovir as first line treatment?

- Patients with life-threatening disease
- High viral load (>100,000 IU/ml)
- Concern for inadequate gastrointestinal absorption
 - CMV colitis, diarrhoea

When to give secondary prophylaxis

- Patients recently treated with high dose immunosuppression (1-3 month course)
- Severe CMV disease
- Patients with >1 episode of CMV disease

Other considerations

- Dose reduction of antiviral treatment due to side effects such as leukopenia should be avoided as much as possible.
- A reduction of mycophenolic acid products, mammalian target of rapamycin inhibitors, azathioprine, and possibly also trimethoprim-sulfamethoxazole dosages should be considered before valganciclovir/ganciclovir reduction (III).

Kotton et al International Consensus Guidelines on the Management of Cytomegalovirus in Solid Organ Transplantation *Transplantation* 2010;89: 779–795

When to consider ganciclovir resistance?

- Severe immunosuppression and high viral load
- Prolonged antiviral therapy (>6 weeks)
- Viral load fails to fall after 2 weeks of appropriate therapy

Algorithm for treatment of ganciclovir resistant CMV

Figure 2: Algorithm for treatment of ganciclovir resistance.

Razonable, R et al, Am J Transplant 2013; 13:93

CMV: Treatment summary

- Can use valGCV for all cases except:
 - CMV Colitis/diarrhea
 - CMV pneumonitis
 - High CMV viral load (>100,000 copies)
- Always check a measured 24 hr CrCl
- Consider and test for resistance
- Expected response
 - Clinical improvement within 48-72 hours
 - A reduction of viral load within 1 week
- Treat until
 - Viremia has cleared (use the same lab)
 - No evidence of end organ disease
- 3 months of secondary prophylaxis then monitor

Adapted from slide by Ison (Transplant physician, Northwestern Medical center, Chicago IL)

Future directions

- Better assessment of immune function to predict likelihood of CMV disease
- CMV vaccines¹
 - Lower rates of antiviral drug use and less degree of viraemia in vaccinees
- Alternative therapies for CMV

CMV specific immunity as a predictor or CMV disease

Future/alternative drugs

- CMX001
 - Nucleoside phosphonate (converted intracellularly to cidofovir diphosphate)
 - Long intracellular half-life (dose twice weekly)
 - No myelosuppression
 - Not concentrated in renal tubules, unlikely to have renal toxicity
 - Active vs CMV, HSV, polyomaviruses, adenovirus
 - 400 times more potent than cidofovir against CMV
 - Limited by severe gastrointestinal side effects at higher doses

Marty et al NEJM 2013; 369:13

Future/alternative drugs

- Letermovir
 - Acts versus viral terminase
- Cyclopropavir
 - DNA polymerase inhibitor
- Leflunomide
- Artesunate
- Maribavir
 - Disappointing results liver and bone marrow transplants
- Sirolimus
 - Has some antiviral properties and associated with lower CMV risk

Considerations in indigenous transplant/remote locations

- Prophylaxis logistically preferred over preemptive strategy in CMV
- Longer duration of prophylaxis in high risk patients may need consideration
- Prospective analysis of CMV disease and associated risk factors, optimal duration of therapy

– More data needed!