Development of methods to rapidly track pathogen and antibiotic resistance profiles from skin sores in Northern Australia

Tim Barnett

Senior Research Fellow, Telethon Kids Institute HOT North Career Development Fellow

HOT NORTH Program

Proudly supported by the people of Western Australia through Channel 7's Telethon

Welcome!

I'd like to acknowledge the Yawuru people and wish to pay my respects to their Elders past, present and future.

Skin Health Epidemiology

- Impetigo Group A *Streptococcus* (GAS) and *Staphylococcus* aureus
- Scabies, Crusted Scabies

SToP Trial: See, Treat and Prevent skin infections

- "See": training of health care workers, teachers and carers in recognising skin infections and referring for treatment
- "Treat": streamlined treatment for impetigo
 (cotrimoxazole), scabies (ivermectin) and crusted scabies
 (chronic disease model of care)
- "Prevent": Wrap around Health Promotion and Environmental Health activities that are community led and partnering with local stakeholders

Skin Sore trial

Benzathine Penicillin GCotrimoxazole, 2x for 3 daysCotrimoxazole, 1x for 5 days

Skin Sore trial

100 80 Treatment success (%) 60 40 20-

GAS clearance predicts treatment success (OR 5.2)

SToP Trial: Antibiotic resistance monitoring

- To understand impact of prescribing on resistance
 - Monitor any emergence and spread of AMR strains

To inform current and future treatment guidelines

Cotrimoxazole (SXT)

 SXT = trimethoprim (TMP) + sulfamethoxazole (SMZ)

 Resistance to SXT requires resistance to both TMP and SMZ

DNA/Protein synthesis enzymes

Antibiotic Resistance

- Cotrimoxazole (SXT) Reported clinically in GAS and S. aureus
 - dfrG identified in S. aureus in WA and NT
 - dfrG in GAS (eg India)
- Possibility for transfer?

What risk does *dfrG* pose on the likelihood of developing SXT resistance?

(should we be monitoring TMP susceptibility?)

Scenario 1 dfrG

Scenario 2 dfrG⁺

- 1. Define genetic basis of SXT-R GAS and *S. aureus*
 - Sequence GAS isolates from Germany reported to have reduced SXT susceptibility (4-8 μg/ml; resistance ≥2 μg/ml).
 - Identify requirement for underlying TMP-R to generate SXT-R under SXT selection

What is the potential to switch?

- *in vitro* evolution
- Identify the frequency of cotrimoxazole mutants under selection
- Importantly identify whether *dfrG*⁻ evolve SXT-R?
 - What mutations are associated with the emergence SXT-R?

This aim will identify SXT-R genes and mutations, and dfrG-requirement

Inform whether we should routinely screen for TMP-R as well as SXT-R

- 1. Define genetic basis of SXT-R GAS and *S. aureus*
 - Identify requirement for TMP-R to generate SXT-R under SXT selection

2. Develop a DNA sequencing pipeline for monitoring strain and antimicrobial resistance profiles of GAS and *S. aureus* directly from skin sore swabs

Metagenomics

Phylogenetic classification

Who is there?

Functional classification What can they do?

Gene A Gene B Gene X

Phil Giffard, Menzies

ARMA Report

Showing the result of the Anti-microbial resistance app

41 reads were analysed	
41 reads were successfully aligned	
159 Alignments	
43 Protein Homolog Alignments	
19 Protein Homolog Reads	
Currently Showing:	
Genes: 6 of 2057	
Drugs: 125 of 288	
Clusters: 6 of 697	

Filter by gene name:	
Filter by drug:	
Min alignment count per gene:	
2	100

Genes		Drugs			Sankey
Name	▲ Reads	Gene Name	▲ Reads	Avg. accuracy	Species
chlortetracycline	5	arlS	4	0.92	Staphylococcus aureus subsp. a
doxycycline	5	mgrA	1	0.95	Staphylococcus aureus subsp. a

Where to next?

- Rapid molecular diagnostics
 - Nanopore sequencing/AMR profiling

- AMR surveillance
- Environmental sampling

Thank you!

- Acknowledgments
 - Telethon Kids Institute
 - Asha Bowen, Jonathan Carapetis
 - Menzies School of Health research
 - Phil Giffard, Tegan Harris, Deb Holt
 - Doherty Institute
 - Mark Davies, Steve Tong
- HOT NORTH Career Development Fellowship and pilot project funding!

WESFARMERS
CENTRE OF
VACCINES
& INFECTIOUS
DISEASES

